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Partitioning
• What tasks go on the FPGA and what tasks 

remain in software on the processor?
• Profile your application.  

– Know which are the compute intensive kernels

• How NOT to get speedup:
– Focus on the algorithm first.  Worry about having the 

kernels to implement your design on an FPGA.
– Ignore data transfer, etc.
– Ignore particulars of the target platform.

• Memory sizes
• Bandwidth
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Know Your Potential Speedup
• Assume the portion that will go on the 

FPGA will take zero time
– and all associated costs (data transfer, etc.) 

are zero
• This gives you the maximum possible 

speedup you can achieve
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Know the Characteristics of Your 
Hardware Platform

• Ignore the algorithm
• Focus on data movement
• Know the target platform and its 

performance characteristics
– What is the data transfer speed and bandwidth 

between the processor and the FPGA?
• In modern FPGAs, this can vary widely

– PCIe, PCI-X, Hypertransport, Frontside Bus
– How much memory is addressable from the 

FPGA?
• On-chip memory is limited
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It’s the Data Movement, Stupid
• Pay attention to data movement at all levels:

– Between processor and RAM local to the FPGA
– Between RAM and FPGA chip

• View memory as a hierarchy
– Addressable by the PC
– Addressable by the FPGA: On board
– On the FPGA:  On chip
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Assess Costs Not in Initial Code
• Assume the kernel that runs on the FPGA takes 

zero time to process the incoming data
• Analyze the amount of time needed to transfer 

data to and from the FPGA board for your design
• The time to transfer data should not exceed the 

processing time of the section of code you are 
accelerating

• If you can overlap data transfer and processing, 
or stream data to the FPGA, you can tolerate 
more time to transfer data 
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FPGA Performance Limits
• Goal:  Use all your resources all the time
• Get the maximum amount of data into and 

out of the FPGA in every clock cycle
• The size of problem you can handle may be 

determined by the amount of data you can 
fit in on-board RAM 

• The rate that you can bring data into the 
FPGA determines the clock rate.  Do as 
much work as you can in one clock cycle. 
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Speed of FPGA Design
• Should you have different clock domains?

– One for the memory interface
– One for the processing logic

• Yes, if it makes sense for the hardware 
platform you are on, but:
– Crossing clock domains is hard
– Usually put FIFOs in between

• Are you really getting more work done?
• More work at a slower clock rate results in 

lower power dissipation
– Faster isn’t always better
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Pipelining and Parallelism
• The main ways you achieve speedup in an 

FPGA design
• Parallelism:

– Replicating the same operation multiple times
– Operate on different data at the same time
– Uses area

• Pipelining
– Overlap the sub-operations of different 

operations
– Requires no extra hardware

• except for control
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Sequential vs. Parallel
Hardware

• Sequential

• Parallel

Parallelism requires more hardware
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Sequential vs. Pipelined
Execution

• Sequential

• Pipelined

Pattern: task; horizontal axis:  time
Showing schedule, not hardware components
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Pipelined Hardware 
• Sequential and Pipelined have same 

hardware

• Pipelined schedule, not hardware units
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Pipeline Your Design
• You should be able to:

– Read inputs every clock cycle 
– Produce results every clock cycle

• Definitions:
– Latency:  The number of stages in the pipeline

• Time it takes to generate one result
– Throughput:  The time from one result to the 

next result
• For most applications 

– The amount of latency does not matter
– The throughput matters
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Use All Available 
Bandwidth

• Provide as many pipelines in parallel as 
your bandwidth to the FPGA will support
– Combine pipelining and parallelism

• Avoid stalls in your pipeline
– All data goes through exact same steps

• Many applications are bandwidth limited  
• Try to fetch data from memory only once  

– on-chip blockRAMs are a “managed” cache
– on-board memory is the main memory
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Optimize Arithmetic

• Optimize the format of your arithmetic 
operands to your data/problem.  

• You are not constrained to stick to 8, 16 
and 32 bit integers, or standard floating 
point formats.  

• You can choose integers, fixed point or 
floating point, and any number of bits in any 
format.  

• This flexibility means a lot of work in terms 
of choosing the correct implementation.
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Example: Custom Floating Point
• Inputs and Outputs are in single precision 

IEEE Floating Point
• Design consists of a large number of 

additions
• Do NOT normalize after each addition:

– This requires an additional adder
• Instead, add a bit to the mantissa for each 

sum
• Normalize at the end
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Avoid Special Cases

• Want to keep all your hardware running all 
the time

• Initialization happens only  once
– Do it in software
– Figure out a way to handle the initial case the 

same as all other cases:
• Pad with zeros, ...

• Do not devote hardware to special cases
• Avoid stalls, bubbles in pipelines
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Avoid Data Copying
• If your algorithm iterates through the data several 

times:
– Use one memory bank for input data and another for 

output data
– At the end of each iteration, swap the roles of the input 

and output memories

• Avoid data copying at every level of the memory 
hierarchy.  

• Overlap computation and data transfer as much 
as possible at every level of the hierarchy.  
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Now Implement the Kernel

• Use parameterized libraries where available
– Xilinx Coregen
– Altera IP
– Commercially available libraries

• Avoid FIFOs
• Compilers are fine, once you have designed the 

outline of your solution
– Memory Hierarchy
– Clock Cycle
– Pipelining
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An Efficient FPGA Design
Described in:  Vforce: Aiding the Productivity and Portability in 
Reconfigurable Supercomputer Applications via Runtime Hardware Binding
available from: http://www.ll.mit.edu/HPEC/agendas/proc07/agenda.html
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To Learn More
• Computer. Published by the IEEE, Special Issue on 

“High-Performance Reconfigurable Computing”
March, 2007
– Achieving High Performance with FPGA-Based Computing by 

M. Herbordt, T. VanCourt, et al., pp. 50-57 

• Reconfigurable Computing Lab at Northeastern:
http://www.ece.neu.edu/groups/rcl/
– Click on “Publications”

• Thank you!  Miriam Leeser
– mel@coe.neu.edu
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