
MAPLD 2008

Prof. Miriam Leeser
Department of Electrical and Computer Engineering

Northeastern University
Boston MA

mel@coe.neu.edu

Leeser’s Lessons
or

How to Get Performance Out of
Your FPGA Designs

and
How NOT To

MAPLD 2008

FPGA(Hardware) Platform

PCI
Controller

PCI Bus to Host

FPGA 1 FPGA 2

Memory Bank 1

Memory
Bank 4

Memory
Bank 5

Memory
Bank 2

Memory
Bank 3

3MAPLD 2008

Partitioning
• What tasks go on the FPGA and what tasks

remain in software on the processor?
• Profile your application.

– Know which are the compute intensive kernels

• How NOT to get speedup:
– Focus on the algorithm first. Worry about having the

kernels to implement your design on an FPGA.
– Ignore data transfer, etc.
– Ignore particulars of the target platform.

• Memory sizes
• Bandwidth

MAPLD 2008

Know Your Potential Speedup
• Assume the portion that will go on the

FPGA will take zero time
– and all associated costs (data transfer, etc.)

are zero
• This gives you the maximum possible

speedup you can achieve

MAPLD 2008

Know the Characteristics of Your
Hardware Platform

• Ignore the algorithm
• Focus on data movement
• Know the target platform and its

performance characteristics
– What is the data transfer speed and bandwidth

between the processor and the FPGA?
• In modern FPGAs, this can vary widely

– PCIe, PCI-X, Hypertransport, Frontside Bus
– How much memory is addressable from the

FPGA?
• On-chip memory is limited

MAPLD 2008

It’s the Data Movement, Stupid
• Pay attention to data movement at all levels:

– Between processor and RAM local to the FPGA
– Between RAM and FPGA chip

• View memory as a hierarchy
– Addressable by the PC
– Addressable by the FPGA: On board
– On the FPGA: On chip

MAPLD 2008

Assess Costs Not in Initial Code
• Assume the kernel that runs on the FPGA takes

zero time to process the incoming data
• Analyze the amount of time needed to transfer

data to and from the FPGA board for your design
• The time to transfer data should not exceed the

processing time of the section of code you are
accelerating

• If you can overlap data transfer and processing,
or stream data to the FPGA, you can tolerate
more time to transfer data

MAPLD 2008

FPGA Performance Limits
• Goal: Use all your resources all the time
• Get the maximum amount of data into and

out of the FPGA in every clock cycle
• The size of problem you can handle may be

determined by the amount of data you can
fit in on-board RAM

• The rate that you can bring data into the
FPGA determines the clock rate. Do as
much work as you can in one clock cycle.

MAPLD 2008

Speed of FPGA Design
• Should you have different clock domains?

– One for the memory interface
– One for the processing logic

• Yes, if it makes sense for the hardware
platform you are on, but:
– Crossing clock domains is hard
– Usually put FIFOs in between

• Are you really getting more work done?
• More work at a slower clock rate results in

lower power dissipation
– Faster isn’t always better

MAPLD 2008

Pipelining and Parallelism
• The main ways you achieve speedup in an

FPGA design
• Parallelism:

– Replicating the same operation multiple times
– Operate on different data at the same time
– Uses area

• Pipelining
– Overlap the sub-operations of different

operations
– Requires no extra hardware

• except for control

MAPLD 2008

Sequential vs. Parallel
Hardware

• Sequential

• Parallel

Parallelism requires more hardware

MAPLD 2008

Sequential vs. Pipelined
Execution

• Sequential

• Pipelined

Pattern: task; horizontal axis: time
Showing schedule, not hardware components

MAPLD 2008

Pipelined Hardware
• Sequential and Pipelined have same

hardware

• Pipelined schedule, not hardware units

MAPLD 2008

Pipeline Your Design
• You should be able to:

– Read inputs every clock cycle
– Produce results every clock cycle

• Definitions:
– Latency: The number of stages in the pipeline

• Time it takes to generate one result
– Throughput: The time from one result to the

next result
• For most applications

– The amount of latency does not matter
– The throughput matters

MAPLD 2008

Use All Available
Bandwidth

• Provide as many pipelines in parallel as
your bandwidth to the FPGA will support
– Combine pipelining and parallelism

• Avoid stalls in your pipeline
– All data goes through exact same steps

• Many applications are bandwidth limited
• Try to fetch data from memory only once

– on-chip blockRAMs are a “managed” cache
– on-board memory is the main memory

MAPLD 2008

Optimize Arithmetic

• Optimize the format of your arithmetic
operands to your data/problem.

• You are not constrained to stick to 8, 16
and 32 bit integers, or standard floating
point formats.

• You can choose integers, fixed point or
floating point, and any number of bits in any
format.

• This flexibility means a lot of work in terms
of choosing the correct implementation.

MAPLD 2008

Example: Custom Floating Point
• Inputs and Outputs are in single precision

IEEE Floating Point
• Design consists of a large number of

additions
• Do NOT normalize after each addition:

– This requires an additional adder
• Instead, add a bit to the mantissa for each

sum
• Normalize at the end

MAPLD 2008

Avoid Special Cases

• Want to keep all your hardware running all
the time

• Initialization happens only once
– Do it in software
– Figure out a way to handle the initial case the

same as all other cases:
• Pad with zeros, ...

• Do not devote hardware to special cases
• Avoid stalls, bubbles in pipelines

MAPLD 2008

Avoid Data Copying
• If your algorithm iterates through the data several

times:
– Use one memory bank for input data and another for

output data
– At the end of each iteration, swap the roles of the input

and output memories

• Avoid data copying at every level of the memory
hierarchy.

• Overlap computation and data transfer as much
as possible at every level of the hierarchy.

MAPLD 2008

Now Implement the Kernel

• Use parameterized libraries where available
– Xilinx Coregen
– Altera IP
– Commercially available libraries

• Avoid FIFOs
• Compilers are fine, once you have designed the

outline of your solution
– Memory Hierarchy
– Clock Cycle
– Pipelining

MAPLD 2008

An Efficient FPGA Design
Described in: Vforce: Aiding the Productivity and Portability in
Reconfigurable Supercomputer Applications via Runtime Hardware Binding
available from: http://www.ll.mit.edu/HPEC/agendas/proc07/agenda.html

22MAPLD 2008

To Learn More
• Computer. Published by the IEEE, Special Issue on

“High-Performance Reconfigurable Computing”
March, 2007
– Achieving High Performance with FPGA-Based Computing by

M. Herbordt, T. VanCourt, et al., pp. 50-57

• Reconfigurable Computing Lab at Northeastern:
http://www.ece.neu.edu/groups/rcl/
– Click on “Publications”

• Thank you! Miriam Leeser
– mel@coe.neu.edu

	Leeser’s Lessons�or�How to Get Performance Out of Your FPGA Designs�and�How NOT To
	FPGA(Hardware) Platform
	Partitioning
	Know Your Potential Speedup
	Know the Characteristics of Your Hardware Platform
	It’s the Data Movement, Stupid
	Assess Costs Not in Initial Code
	FPGA Performance Limits
	Speed of FPGA Design
	Pipelining and Parallelism
	Sequential vs. Parallel Hardware
	Sequential vs. Pipelined Execution
	Pipelined Hardware
	Pipeline Your Design
	Use All Available Bandwidth
	Optimize Arithmetic
	Example: Custom Floating Point
	Avoid Special Cases
	Avoid Data Copying
	Now Implement the Kernel
	An Efficient FPGA Design
	To Learn More

